Absolute quantification reveals microbial and component dynamics in spontaneously fermented Sojae Semen Praeparatum
Main Article Content
Keywords
Absolute Quantitative Sequencing; Fermentation; Microorganisms; Quality; Sojae Semen Praeparatum
Abstract
Sojae Semen Praeparatum (SSP) is a traditional food and medicine. This study aimed to elucidate microbial succession during fermentation and its correlations with key metabolites. An absolute quantitative sequencing (AQS) approach was employed, which quantifies microbial copy numbers and accounts for changes in total microbial load across fermentation stages to accurately capture microbial succession. SSP samples from both koji-making and post-fermentation were analyzed using AQS, GC-MS, and physicochemical profiling. Progressive increases were observed in free isoflavones, polyphenols, ammonia nitrogen (AN), total acids, and water-/alcohol-soluble extracts. GC-MS identified 54 volatiles, mainly acids, esters, and amines, showing stage-specific variations. AQS revealed Bacillus and Aspergillus flavus as dominant during koji-making, while Pediococcus and Enterococcus predominated in the post-fermentation stage, representing a new insight into SSP succession. Significant correlations (|r| > 0.8, p < 0.05) were observed between dominant taxa and key components (e.g., isoflavones, polyphenols, AN, and 21 volatiles). Interestingly, this study discusses dual roles of dominant taxa in producing both beneficial components (e.g., isoflavones and polyphenols) and potential risk compounds (e.g., biogenic amines and aflatoxins). These findings highlight AQS as a powerful tool for investigating complex microbial dynamics and provide a basis for optimizing SSP fermentation and quality management.
References
An, F., Wu, J., Feng, Y., Pan, G., Ma, Y., Jiang, J., Yang, X., Xue, R., Wu, R. and Zhao, M. 2023. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Comprehensive Reviews in Food Science and Food Safety 22(4): 2773–2801. https://doi.org/10.1111/1541-4337.13162
Azizoglu, U., Salehi Jouzani, G., Sansinenea, E. and Sanchis-Borja, V. 2023. Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Reviews in Environmental Science and Bio/Technology 22(2): 319–348. https://doi.org/10.1007/s11157-023-09652-5
Barbieri, F., Montanari, C., Gardini, F. and Tabanelli, G. 2019. Biogenic amine production by lactic acid bacteria: A review. Foods 8(1): 17. https://www.mdpi.com/2304-8158/8/1/17
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., . . . Caporaso, J.G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37(8): 852–857. https://doi.org/10.1038/s41587-019-0209-9
Bruijning, M., Ayroles, J.F., Henry, L.P., Koskella, B., Meyer, K.M. and Metcalf, C.J.E. 2023. Relative abundance data can misrepresent heritability of the microbiome. Microbiome 11(1): 222. https://doi.org/10.1186/s40168-023-01669-w
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J. and Holmes, S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13(7): 581–583. https://doi.org/10.1038/nmeth.3869
Furse, S., Virtue, S., Snowden, S.G., Vidal-Puig, A., Stevenson, P.C., Chiarugi, D. and Koulman, A. 2022. Dietary PUFAs drive diverse system-level changes in lipid metabolism. Molecular Metabolism 59: 101457. https://doi.org/10.1016/j.molmet.2022.101457
Gao, X., Ohlander, M., Jeppsson, N., Björk, L. and Trajkovski, V. 2000. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. Journal of Agricultural and Food Chemistry 48(5): 1485–1490. https://doi.org/10.1021/jf991072g
Garcia-Alvarez-Coque, J.M., Taghouti, I. and Martinez-Gomez, V. 2020. Changes in aflatoxin standards: Implications for EU border controls of nut imports. Applied Economic Perspectives and Policy 42(3): 524–541. https://doi.org/10.1093/aepp/ppy036
Guo, Q., Peng, J., Zhao, J., Yue, J., Huang, Y. and Shao, B. 2024. Correlation between microbial communities and volatile flavor compounds in the fermentation of Semen Sojae Praeparatum. LWT-Food Science and Technology 198: 116009. https://doi.org/10.1016/j.lwt.2024.116009
He, M., Peng, Q., Xu, X., Shi, B. and Qiao, Y. 2024. Antioxidant capacities and non-volatile metabolites changes after solid-state fermentation of soybean using oyster mushroom (Pleurotus ostreatus) mycelium. Frontiers in Nutrition 11: 1509341. https://doi.org/10.3389/fnut.2024.1509341
Iorizzo, M., Di Martino, C., Letizia, F., Crawford, T.W. and Paventi, G. 2024. Production of conjugated linoleic acid (CLA) by Lactiplantibacillus plantarum: A review with emphasis on fermented foods. Foods 13(7): 975. https://doi.org/10.3390/foods13070975
Jallow, A., Xie, H., Tang, X., Qi, Z. and Li, P. 2021. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Comprehensive Reviews in Food Science and Food Safety 20(3): 2332–2381. https://doi.org/10.1111/1541-4337.12734
Jia, T. and Yu, Z. 2022. Effect of temperature and fermentation time on fermentation characteristics and Biogenic Amine Formation of Oat Silage. Fermentation 8(8): 352. https://doi.org/10.3390/fermentation8080352
Jiang, Z., Fang, O., Xiu, L. and Wang, T. 2019. Detection method of bacterial flora composition and absolute content based on internal reference sequence (Patent No. CN109943654A). State Intellectual Property Office of the P. R. C.
Kim, M.J., Kwak, H.S. and Kim, S.S. 2018. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang). Food Chemistry 245: 402–409. https://doi.org/10.1016/j.foodchem.2017.10.116
Kumari, R., Sharma, N., Sharma, S., Samurailatpam, S., Padhi, S., Singh, S.P. and Kumar Rai, A. 2023. Production and characterization of bioactive peptides in fermented soybean meal produced using proteolytic Bacillus species isolated from kinema. Food Chemistry 421: 136130. https://doi.org/10.1016/j.foodchem.2023.136130
Lee, J., Nam, S.H., Koo, J.W., Kim, E. and Hwang, T.M. 2021. Comparative evaluation of 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, and 2,4,6-trichloroanisole degradation by ultraviolet/chlorine and ultraviolet/hydrogen peroxide processes. Chemosphere 279: 130513. https://doi.org/10.1016/j.chemosphere.2021.130513
Li, A., Wang, D., Yang, G., Song, J., Kong, X., Liao, S. and Kan, J. 2023. Effects of post-fermentation temperature on amino nitrogen formation kinetics and physicochemical properties of bacterial-type Douchi from different soybean varieties. Food Science 44(2) : 195–203. https://doi.org/10.7506/spkx1002-6630-20220309-116
Li, G., Long, K., Su, M., Liang, Y., Yang, A. and Xie, X. 2014. Preliminary study on dynamic change of microbial flora in fermentation process to “yellow cladding” of Sojoe semen praeparatum. Chinese Journal of Experimental Traditional Medical Formulae 20(11): 139–142. https://doi.org/10.13422/j.cnki.syfjx.2014110139
Li, N., Lu, Z., Ma, X., Li, M., Guo, X., Cheng, X., Wei, F. and Ma, S. 2020. Definition of key components for quality control on revision of standards of Sojae semen praeparatum. Modern Chinese Medicine 22(7): 1000–1005. https://doi.org/10.13313/j.issn.1673-4890.20200316008
Li, T.N., Zhang, X.R., Zeng, Y.J., Ren, Y.Y., Sun, J.L., Yao, R.C., Wang, Y.J., Wang, J. and Huang, Q.W. 2021. Semen Sojae preparatum as a traditional Chinese medicine: Manufacturing technology, bioactive compounds, microbiology and medicinal function. Food Reviews International 39(2): 896-921. https://doi.org/10.1080/87559129.2021.1928180
Liang, J., Li, D., Shi, R., Wang, J., Guo, S., Ma, Y. and Xiong, K. 2019. Effects of microbial community succession on volatile profiles and biogenic amine during sufu fermentation. LWT-Food Science and Technology 114: 108379. https://doi.org/10.1016/j.lwt.2019.108379
Lim, H.J., Park, I.S., Kim, M.J., Seo, J.W., Ha, G., Yang, H.J., Jeong, D.Y., Kim, S.Y. and Jung, C.H. 2025. Protective effect of Ganjang, a traditional fermented Soy sauce, on colitis-associated colorectal cancer in mice. Foods 14(4): 632. https://doi.org/10.3390/foods14040632
Lin, W.M., Weng, Q.Q., Deng, A.P., Zhao, J.C., Zhang, Y., Zhang, S.L., Yu, B., Zhan, Z.L. and Huang, L.Q. 2021. Literature-based analysis of conversion of components in fermentation process of Sojae semen praeparatum. China Journal of Chinese Materia Medica, 46(9), 2119-2132. https://doi.org/10.19540/j.cnki.cjcmm.20210115.601
Liu, F., Cao, D., Xu, W. and Sui, L. 2022. Dynamic analysis of total flavonoids and polysaccharides in Sojae Semen Praeparatum (SSP) fermentation process. Guiding Journal of Traditional Chinese Medicine and Pharmacy 28(1): 45–48. https://doi.org/10.13862/j.cnki.cn43-1446/r.2022.01.043
Liu, F., Sui, L., Wu, Z., Li, Z., Cao, D. and Xu, W. 2021. Analysis of main microorganisms by ITS technology during fermentation process of Sojae Semen Praeparatum produced in Fujian. Journal of Guizhou University of Traditional Chinese Medicine 43(4): 21–25. https://doi.org/10.16588/j.cnki.issn2096-8426.2021.04.006
Liu, L., Chen, X., Hao, L., Zhang, G., Jin, Z., Li, C., Yang, Y., Rao, J. and Chen, B. 2020. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Critical Reviews in Food Science and Nutrition 62(7): 1971–1989. https://doi.org/10.1080/10408398.2020.1848792
Liu, L., Zhao, J., Lu, D., Zhao, J., Duan, G., Zhu, T. and Hu, Y. 2025. The fermentation law of biogenic amines in the pre-fermentation process is revealed by correlation analysis. Foods 14(4) : 583. https://doi.org/10.3390/foods14040583
Ma, S., Li, C., Zhou, H., Li, C., Xie, H., Xie, X., Long, K., Luo, X. and Xie, X. 2022. Analysis of dynamic change law of aflatoxin content in processing of Sojae Semen Praeparatum. Chinese Journal of Hospital Pharmacy 42(21): 2216–2219. https://doi.org/10.13286/j.1001-5213.2022.21.03
Montanari, C., Barbieri, F., Lorenzini, S., Gottardi, D., Šimat, V., Özogul, F., Gardini, F. and Tabanelli, G. 2022. Survival, growth, and biogenic amine production of Enterococcus faecium FC12 in response to extracts and essential oils of Rubus fruticosus and Juniperus oxycedrus. Frontiers in Nutrition 9: 1092172. https://doi.org/10.3389/fnut.2022.1092172
National Pharmacopoeia Commission. 2020. Pharmacopoeia of the People’s Republic of China (2020 ed.). China Medical Science Press.
Özogul, Y. and Özogul, F. 2019. Biogenic amines formation, toxicity, regulations in food. In Saad, B. and Tofalo, R. (Eds.), Biogenic amines in food: Analysis, occurrence and toxicity (pp. 1–27). The Royal Society of Chemistry. https://doi.org/10.1039/9781788015813-00001
Park, Y.K., Lee, J.H. and Mah, J.H. 2019. Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chemistry 278: 1–9. https://doi.org/10.1016/j.foodchem.2018.11.045
Porto, M.C.W., Kuniyoshi, T.M., Azevedo, P.O.S., Vitolo, M. and Oliveira, R.P.S. 2017. Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances 35(3): 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004
PubChem. 2025. PubChem compound summary for CID 8249, Phenformin. National Center for Biotechnology Information. Retrieved April 21 2015, from https://pubchem.ncbi.nlm.nih.gov/compound/Phenformin
Qiu, F., Shi, H., Wang, S., Ma, L. and Wang, M. 2019. Safety evaluation of Semen Sojae Preparatum based on simultaneous LC-ESI-MS/MS quantification of aflatoxin B(1) , B(2) , G(1) , G(2) and M(1). Biomedical Chromatography 33(8): e4541. https://doi.org/10.1002/bmc.4541
Ren, X., Zhang, Q., Zhang, W., Mao, J. and Li, P. 2020. Control of aflatoxigenic molds by antagonistic microorganisms: Inhibitory behaviors, bioactive compounds, related mechanisms, and influencing factors. Toxins 12(1): 24. https://doi.org/10.3390/toxins12010024
Shao, X., Xu, B., Chen, C., Li, P. and Luo, H. 2022. The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: a review. Critical Reviews in Food Science and Nutrition 62(21): 5950–5963. https://doi.org/10.1080/10408398.2021.1895059
Sui, L., Wang, S., Wang, X., Su, L., Xu, H., Xu, W., Chen, L. and Li, H. 2024. Analysis of different strains fermented Douchi by GC×GC-TOFMS and UPLC–Q-TOFMS omics analysis. Foods 13(21): 3521. https://doi.org/10.3390/foods13213521
Tkacz, A., Hortala, M. and Poole, P.S. 2018. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6(1) : 110. https://doi.org/10.1186/s40168-018-0491-7
Toro-Funes, N., Bosch-Fuste, J., Latorre-Moratalla, M.L., Veciana-Nogués, M. T. and Vidal-Carou, M.C. 2015. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chemistry 173: 1119–1124. https://doi.org/10.1016/j.foodchem.2014.10.118
Wang, B., Shi, Y., Zhang, H., Hu, Y., Chen, H., Liu, Y., Wang, F. and Chen, L. 2024. Influence of microorganisms on flavor substances and functional components of Sojae Semen Praeparatum during fermentation: A study integrating comparative metabolomics and high-throughput sequencing. Food Research International 187: 114405. https://doi.org/10.1016/j.foodres.2024.114405
Wang, P., Wu, Y., Zhang, M. and Gao, X. 2014. Analysis of five active ingredients in 21 Semen Sojae Praeparatum of traditional Chinese medicine from different regions. Chinese Journal of Experimental Traditional Medical Formulae 20(19): 64–67. https://doi.org/10.13422/j.cnki.syfjx.2014190064
Wang, Y., Lin, W., Zhang, S., Yu, B., Nan, T., Kang, L., Li, G., He, X., Zhilai, Z. and Huang, L. 2024. Analysis on quality of Sojae Semen Praeparatum based on traditional quality evaluation. Chinese Journal of Experimental Traditional Medical Formulae 30(1): 31–42. https://doi.org/10.13422/j.cnki.syfjx.20231061
Xiong, J., Ren, J., Zhou, S., Su, M., Wang, L., Weng, M., Xie, W., & Xie, X. 2019. Screening and identification of GABA-producing microbes in fermentation process of Sojae Semen Praeparatum. China Journal of Chinese Materia Medica, 44(11): 2266–2273. https://doi.org/10.19540/j.cnki.cjcmm.20190321.301
Xu, D., Wang, P., Zhang, X., Zhang, J., Sun, Y., Gao, L. and Wang, W. 2020. High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food. Food Microbiology 86: 103340. https://doi.org/10.1016/j.fm.2019.103340
Yao, Z., Zhu, Y., Wu, Q. and Xu, Y. 2024. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Critical Reviews in Food Science and Nutrition 64(15): 4995–5015. https://doi.org/10.1080/10408398.2022.2147899
Zhao, C., Wu, S., Zhao, W., Peng, D., Huang, J., Du, B., & Li, P. 2022. Effect of different fermentation methods on the quality and flavor of Semen Sojae Preparatum. Science and Technology of Food Industry 43(23): 144–152. https://doi.org/10.13386/j.issn1002-0306.2022030095
Zhao, C.C., Kim, D.W., & Eun, J.B. 2019. Physicochemical properties and bacterial community dynamics of hongeo, a Korean traditional fermented skate product, during fermentation at 10°C. LWT-Food Science and Technology 104: 109–119. https://doi.org/10.1016/j.lwt.2019.01.048
Zhao, H., Chen, H., Wu, G., Xu, J., Zhu, W., Chen, J., Luo, D. and Guo, S. 2025. Integrative metabolomics—GC-IMS approach to assess metabolic and flavour substance shifts during fermentation of Yangjiang douchi. Food Chemistry 466: 142199. https://doi.org/10.1016/j.foodchem.2024.142199
Zhu, H., Long, K., Liang, Y., Su, M. and Xie, X. 2015. Dynamic change monitoring of microbe species in fermentation process of Sojoe Semen Praeparatum by Biolog Microbial Identification System. Chinese Journal of Experimental Traditional Medical Formulae 21(17): 14–17. https://doi.org/10.13422/j.cnki.syfjx.2015170014
Zhuo, J., Xuan, J., Chen, Y., Tu, J., Mu, H., Wang, J. and Liu, G. 2023. Increase of γ-aminobutyric acid content and improvement of physicochemical characteristics of mulberry leaf powder by fermentation with a selected lactic acid bacteria strain. LWT-Food Science and Technology 187: 115250. https://doi.org/10.1016/j.lwt.2023.115250
