Antibacterial activity of hydrolized palm kernel oil and red palm super olein blend against Gram-negative and Gram-positive bacteria
Main Article Content
Keywords
antibacterial activity, red palm super olein, palm kernel oil, monolaurin, phytonutrient
Abstract
This study investigated the in vitro antibacterial activity of a product, hydrolyzed palm kernel oil (PKO) and red palm super olein (RPSO) blend (HPRB) against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus) bacteria, all of which are relevant to foodborne illness. HPRB was synthesized through enzymatic hydrolysis of PKO and RPSO at four different ratios. The antibacterial activity of the resulting HPRB formulations was evaluated using disc diffusion and micro-dilution assays. HPRB-C (60% PKO and 40% RPSO) and HPRB-D (80% PKO and 20% RPSO) exhibited the strongest in vitro antibacterial activity across all tested bacteria, a finding associated with their high 1-monolaurin content (17.54% and 24.99%, respectively). The phytonutrient content of RPSO also likely contributed to the observed activity. These results suggest that HPRB, particularly formulations C and D, holds promise as a source of natural antibacterial agents, although further optimization for lower effective concentrations and subsequent in vivo studies are needed.
References
Almeida, A.B., Araújo, D.N., Strapazzon, J.V., Rita, C., Dilda, A., Balen, G., Deolindo, G.L., Nesi, D., Furlan, V.J.M., Pelisser, G., Mendes, R.E., Fracasso, M., Wagner, R., Boiago, M.M., and DA SILVA, A. S. 2021. Use of blend based on an emulsifier, monolaurin, and glycerides of butyric acid in the diet of broilers: Impacts on intestinal health, performance, and meat. Anais Da Academia Brasileira de Ciencias, 93, 1–17. 10.1590/0001-3765202120210687
Bale, B.M., Peekate, L.P., and Wemedo, S. A. 2024. Antibiotic Susceptibility Pattern of Bacteria Associated With Clinical Waste Materials in Gokana Local Government Area of Rivers State. Open Journal of Bioscience Research (ISSN: 2734-2069), 5(1), 21–33. 10.52417/ojbr.v5i1.577
Balouiri, M., Sadiki, M., and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. 10.1016/j.jpha.2015.11.005
Cheong, N.D.H., Zakaria, L.A., and Yusof, H. 2022. Qualitative-phytochemical screening and antibacterial properties of Momordica charantia methanolic extract against selected bacterial strains. Malaysian Journal of Medicine and Health Sciences 18(3), 154–161. 10.47836/mjmhs18.s15.21
Collison, M.W. (Ed.). 2017. Official Methods and Recommended Practices of the AOCS 7th Edition. American Oil Chemists’ Society.
Dombach, J.L., Quintana, J.L.J., Allgood, S.C., Nagy, T.A., Gustafson, D.L., and Detweiler, C.S. 2022. A small molecule that disrupts S. Typhimurium membrane voltage without cell lysis reduces bacterial colonization of mice. PLoS Pathogens, 18(6), 1–18. 10.1371/journal.ppat.1010606
Farahmandfar, R., Esmaeilzadeh Kenari, R., Asnaashari, M., Shahrampour, D., and Bakhshandeh, T. 2019. Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Science and Nutrition, 7(2), 465–475. 10.1002/fsn3.815
Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., and Opavski, N. 2022. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11(4), 1–26. 10.3390/antibiotics11040427
Ghany, S.S.H.A.E., Ibrahem, R.A., El-Gendy, A.O., El-Baky, R.M.A., Mustafa, A., and Azmy, A.F. 2024. Novel synergistic interactions between monolaurin, a mono-acyl glycerol and β lactam antibiotics against Staphylococcus aureus: an in vitro study. BMC infectious diseases, 24(1), 379. 10.1186/s12879-024-09261-9
Grajzer, M., Kozłowska, W., Zalewski, I., Matkowski, A., and Monika, R. 2025. Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. 1–21.
Habibiasr, M., Mokhtar, M.N., Ibrahim, M.N., Yunos, K.F.M., and Ibrahim, N.A. 2022. Effect of drying on the physical and chemical properties of palm kernel oil. Journal of Science of Food and Agriculture 102(10), 4046–4053. 10.1002/jsfa.11753
Hartmann, M.S., Mousavi, S., Bereswill, S., and Heimesaat, M.M. 2020. Vitamin E as promising adjunct treatment option in the combat of infectious diseases caused by bacterial including multi-drug resistant pathogens—results from a comprehensive literature survey. European Journal of Microbiology and Immunology 10(4), 193–201. 10.1556/1886.2020.00020
Hassan Abd El-Ghany, S.S., Azmy, A.F., Osama El-Gendy, A., Abd El-Baky, R.M., Mustafa, A., Abourehab, M.A.S., El-Beeh, M.E., and Ibrahem, R.A. 2024. Antimicrobial and Antibiofilm Activity of Monolaurin against Methicillin-Resistant Staphylococcus aureus Isolated from Wound Infections. International Journal of Microbiology, 2024. 10.1155/2024/7518368
Hovorková, P., Laloučková, K., & and Skřivanová, E. (2018). Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against Gram-positive pathogenic and gut commensal bacteria. Czech Journal of Animal Science, 63(3):119–125. 10.17221/70/2017-CJAS
Ismail, M., Alsalahi, A., Imam, M.U., Ooi, D.J., Khaza’ai, H., Aljaberi, M.A., Shamsudin, M.N., and Idrus, Z. 2020. Safety and Neuroprotective Efficacy of Palm Oil and Tocotrienol-Rich Fraction from Palm Oil: A Systematic Review. Nutrients, 12(521). 10.3390/nu12020521
Jackman, J.A., Yoon, B.K., Li, D., and Cho, N.J. 2016. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules 21(3). 10.3390/molecules21030305
Karpiński, T.M., and Adamczak, A. 2019. Fucoxanthin—an antibacterial carotenoid. Antioxidants 8(8), 239. 10.3390/antiox8080239
Koshak, A.E., Elfaky, M.A., Abdallah, H.M., Albadawi, D.A.I., Mohamed, G.A., Ibrahim, S.R.M., Alzain, A.A., Khafagy, E.S., Rajab, A.A.H., and Hegazy, W.A.H. 2024. Arctigenin from Burdock Root Exhibits Potent Antibacterial and Anti-Virulence Properties against Pseudomonas aeruginosa. Journal of Microbiology and Biotechnology, 34(8), 1642–1652. 10.4014/jmb.2403.03003
Lee, H., and Yoon, Y. 2021. Etiological agents implicated in foodborne illness world wide. Food Science of Animal Resources, 41(1), 1–7. 10.5851/KOSFA.2020.E75
Li, X., Gao, Y., Wang, S., Huang, Y., Long, G., Wang, D., Jia, J., and Wang, A. 2024. Natural prenylflavonoids from Sophora flavescens root bark against multidrug. Journal of Agricultural and Food Chemistry, 72(26), 14684–14700.
Martins, G.A., and Bicas, J.L. 2024. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Brazilian Journal of Food Technology, 27, 1–15. 10.1590/1981-6723.07123
Monteiro, J.B., Nascimento, M.G., and Ninow, J.L. 2003. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnology Letters, 25(8), 641–644. 10.1023/A:1023016215537
Mulyodarsono, N.D.A.R., and Kristopo, H. 2024. The Water Hygiene of Street Food Vendors in Southeast Asia: A Review. IOP Conference Series: Earth and Environmental Science, 1324(1), 1–8. 10.1088/1755-1315/1324/1/012104
Mulyono, M.E., Lubis, M.E.S., Yudanto, B.G., Panjaitan, F.R., Rizki, I.F., and Bajra, B.D. 2023. Application of dry fractional crystallisation on high-oleic low-palmitic red palm super olein production. International Journal of Food Science and Technology, 58(6), 3402–3409. 10.1111/ijfs.16353
Ngatirah, N., Hidayat, C., Rahayu, E.S., and Utami, T. 2022. Enzymatic glycerolysis of palm kernel olein-stearin blend for monolaurin synthesis as an emulsifier and antibacterial. Foods 11(16). 10.3390/foods11162412
Okafor Chibuanuli, M., Ikegbunam Moses, N., Nwachukwu Judith, C., Ebenebe Ijeoma, N., and Nnanna Joy, C. 2020. Prevalence of antibiotic resistant bacteria in Nigerian fermented food condiments. Journal of Biology and Life Science 11(1), 110. 10.5296/jbls.v11i1.16383
Performance Standards for Antimicrobial Susceptibility Testing 30th Edition. 2020. In Clinical and Laboratory Standards Institute.
Pranav, R.J., Kumar, S.S., Rangaraj, P.R., Sangapillai, K., and Ragunathan, R. 2024. Exploring the therapeutic potential of cinnamon and clove essential oils for mitigating foodborne-diseases: bioactivity and molecular interactions. Food Science and Applied Biotechnology, 7(1), 122–132. 10.30721/fsab2024.v7.i1.318
Shrum, S.A., Nukala, U., Shrimali, S., Pineda, E.N., Krager, K.J., Thakkar, S., Jones, D.E., Pathak, R., Breen, P.J., Aykin-Burns, N., and Compadre, C.M. 2023. Tocotrienols provide radioprotection to multiple organ systems through complementary mechanisms of antioxidant and signaling effects. Antioxidants 12(11), 1987. 10.3390/antiox12111987
Smith, A., & Hussey, M. 2016. Gram Stain Protocols. In American Society for Microbiology (Issue September 2020).
Subroto, E. 2020. Monoacylglycerols and diacylglycerols for fat-based food products: a review. Food Research 4(4), 932–943. 10.26656/fr.2017.4(4).398
Takó, M., Kerekes, E.B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., and Vágvölgyi, C. 2020. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants, 9(2). 10.3390/antiox9020165
Tanasă, F., Nechifor, M., & Teacă, C.A. 2024. Essential Oils as Alternative Green Broad-Spectrum Biocides. Plants, 13(23). 10.3390/plants13233442
Tao, Q., Wu, Q., Zhang, Z., Liu, J., Tian, C., Huang, Z., Malakar, P.K., Pan, Y., and Zhao, Y. (2022). Meta-Analysis for the Global Prevalence of Foodborne Pathogens Exhibiting Antibiotic Resistance and Biofilm Formation. Frontiers in microbiology, 13, 906490. 10.3389/fmicb.2022.906490
Thamlikitkul, V., Tiengrim, S., Thamthaweechok, N., Buranapakdee, P., and Chiemchaisri, W. 2019. Contamination by antibiotic--resistant bacteria in selected environments in Thailand. International Journal of Environmental Research and Public Health, 16(19). 10.3390/ijerph16193753
Tian, F., Woo, S.Y., Lee, S.Y., Park, S.B., Zheng, Y., and Chun, H.S. 2022. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics, 11(12). 10.3390/antibiotics11121727
Toti, E., Oliver Chen, C.Y., Palmery, M., Valencia, D.V., and Peluso, I. 2018. Non-provitamin A and provitamin A carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition? Oxidative Medicine and Cellular Longevity, 2018. 10.1155/2018/4637861
Tsukagoshi, M., Sirisopapong, M., Namai, F., Ishida, M., Okrathok, S., Shigemori, S., Ogita, T., Sato, T., Khempaka, S., and Shimosato, T. 2020. Lactobacillus ingluviei C37 from chicken inhibits inflammation in LPS-stimulated mouse-macrophages. Animal Science Journal, 91(1), 1–7. 10.1111/asj.13436
Ustadi, F.F., Widodo, A.D.W., and Setiawati, Y. 2022. In vitro antibacterial activity of waste palm cooking oil against Staphylococcus aureus. Indian Journal of Forensic Medicine & Toxicology 16(1), 487–493.
Viault, G., Kempf, M., Ville, A., Alsabil, K., Perrot, R., Richomme, P., Hélesbeux, J.J., and Séraphin, D. 2021. Semisynthetic Vitamin E Derivatives as Potent Antibacterial Agents against Resistant Gram-Positive Pathogens. ChemMedChem, 16(5), 881–890. 10.1002/cmdc.202000792
Wang, W., Chen, J., Shao, X., Huang, P., Zha, J., and Ye, Y. 2021. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Science and Nutrition, 9(9), 4701–4710. 10.1002/fsn3.2266
Wang, W., Wang, R., Zhang, G., Chen, F., and Xu, B. 2020. In vitro antibacterial activities and mechanisms of action of fatty acid monoglycerides against four foodborne bacteria. Journal of Food Protection, 83(2), 331–337. 10.4315/0362-028X.JFP-19-259
World Health Organization (WHO). 2016. Burden of Foodborne Diseases in the South-East Asia Region. WHO library -cataloguing-in-publication data. WHO, Geneva, Switzerland.
Wu, Y., and Zeng, Z. 2024. Antibiotic residues, antimicrobial-resistance and intervention strategies of foodborne pathogens. Antibiotics 13(4), 1–7. 10.3390/antibiotics13040321
Wu, L., Zhao, J., Wu, L., Zhang, Y., and Li, J. 2022. Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC-MS. Lwt, 169(September), 114026. 10.1016/j.lwt.2022.114026
Wu, Y., and Zeng, Z. 2024. Antibiotic Residues, Antimicrobial Resistance and Intervention Strategies of Foodborne Pathogens. Antibiotics, 13(4), 1–7. 10.3390/antibiotics13040321
Zeng, F.K., Yang, B., Wang, Y.H., Wang, W.F., Ning, Z.X., and Li, L. 2010. Enzymatic production of monoacylglycerols with camellia oil by the glycerolysis reaction. Journal of the American Oil Chemists’ Society, 87(5), 531–537. 10.1007/s11746-009-1533-x
