Assessing the impact of olive pomace and whey powder on growth performance and nutritional parameters in Wistar rats
Main Article Content
Keywords
animal nutrition, digestibility, intestinal morphology, nitrogen balance, olive pomace, whey powder
Abstract
The present study was conducted to evaluate the nutritional efficacy of olive pomace (OP) and whey powder (WP) as alternative feed ingredients in animal diets. A total of 18 male Wistar mice were randomly assigned to three experimental groups (n = 6 per group) and fed one of the following diets for 28 days: a standard control diet (S), an OP-based diet, and a WP-based diet. The OP diet resulted in body weight gain of 95.86 ± 2.48 g (78.33% increase), which was 92.6% of the S group’s performance (103.5 ± 0.80 g; 80.73% increase) despite significantly lower energy intake (1,250.00 ± 7.40 kcal/rat vs. 1,891.6 ± 7.14 kcal/rat). The WP diet led to moderate growth of 85.24 ± 3.92 g (66.03% increase) with an energy intake of 1560.6 ± 6.6 kcal/rat. Despite lower nitrogen balance and protein digestibility, the OP diet improved intestinal morphology, showing a higher villus height-to-crypt ratio than both S and WP groups. These changes may help mitigate the loss in digestibility. The WP diet showed numerically lower lipid levels without reaching statistical significance, while liver enzymes were significantly increased (aspartate transaminase: 253 ± 3.21 U/L, P < 0.001; alanine transaminase: 97 ± 4.93 U/L, P < 0.05), compared to control and OP groups. Both diets offer distinct benefits for sustainable animal nutrition.
References
Alexandre, V., Even, P.C., Larue-Achagiotis, C., Blouin, J.M., Blachier, F., Benamouzig, R., Tome, D., and Davila, A.-M. 2013. Lactose absorption and colonic fermentation after host metabolism in rats. British Journal of Nutrition 110(4):625–631. 10.1017/S0007114512005557
AOAC. 2005. Official Methods of Analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, MD.
Babbar, N., Dejonghe, W., Gatti, M., Sforza, S., and Elst, K. 2015. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Critical Reviews in Biotechnology 36:594–606. 10.3109/07388551.2014.996732
Bartholomae, E., and Johnston, C.S. 2023. Nitrogen balance at the recommended dietary allowance for protein in minimally active male vegans. Nutrients 15(15):3159. 10.3390/nu15143159
Bava, R., Castagna, F., Lupia, C., Poerio, G., Liguori, G., Lombardi, R., Naturale, M.D., Mercuri, C., Bulotta, R. M., Britti, D., and Palma, E. 2024. Antimicrobial resistance in livestock: a serious threat to public health. Antibiotics 13(6):551. 10.3390/antibiotics13060551
Boirie, Y., Dangin, M., Gachon, P., Vasson, M.P., Maubois, J.L., and Beaufrère, B. 1997. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences 94(26):14930–14935. 10.1073/pnas.94.26.14930
Bos, C., Metges, C.C., Gaudichon, C., Petzke, K.J., Pueyo, M.E., Morens, C., Everwand, J., Benamouzig, R., and Tome, D. 2003. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. Journal of Nutrition 133:1308–1315. 10.1093/jn/133.5.1308
Čano Dedić, L., Pašalić, A., Šegalo, S., Serdarević, N., and Vefić, A. 2023. Effects of protein supplements on liver enzyme levels in athletes. Knowledge International Journal 55(4):744–748.
Chia, L.W., Mank, M., Blijenberg, B., Bongers, R.S., Van Limpt, K., Wopereis, H., Tims, S., Stahl, B., Belzer, C., and Knol, J. 2021. Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides. Beneficial Microbes 12(1):69–83. 10.3920/BM2020.0005
Chiofalo, V., Liotta, L., Lo Presti, V., Gresta, F., Di Rosa, A.R., and Chiofalo, B. 2020. Effect of dietary olive cake supplementation on performance, carcass characteristics, and meat-quality of beef cattle. Animals 10:1176. 10.3390/ani10071176
Coderoni, S., and Perito, M.A. 2020. Sustainable consumption in the circular economy: an analysis of consumers’ purchase intentions for waste-to-value food. Journal of Cleaner Production 252:119870. 10.1016/j.jclepro.2019.119870
Coimbra, M.A., Cardoso, S.M., and Lopes-Da-Silva, J.A. 2010. Olive pomace, a source for valuable Arabinan-rich pectic -polysaccharides. In: Rauter, A., Vogel, P., and Queneau, Y. (eds.), Carbohydrates in Sustainable Development I. Topics in Current Chemistry. Springer, Berlin, Germany, pp. 129–141. 10.1007/128_2010_60
Council of European Communities. 1986. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the member states regarding the protection of animals used for experimental and other scientific purposes. Official Journal of the European Communities L358:1–28.
Dal Bosco, A., Castellini, C., Cardinali, R., Mourvaki, E., Moscati, L., Battistacci, L., Servili, M., and Taticchi, A. 2007. Olive cake dietary supplementation in rabbit: immune and oxidative status. Italian Journal of Animal Science 6(1):713–715. 10.4081/ijas.2007.1s.761
Difonzo, G., Troilo, M., Squeo, G., Pasqualone, A., and Caponio, F. 2021. Functional compounds from olive pomace to obtain high-added value foods—a review. Journal of the Science of Food and Agriculture 101(1):15–26. 10.1002/jsfa.10478
El Hachemi, A., Mecherfi K.E., Benzineb, K., Saidi, D., and Kheroua, O. 2007. Supplementation of olive mill wastes in broiler chicken feeding. African Journal of Biotechnology 6(15):1848–1853. 10.5897/AJB2007.000-2274
Elkotb, M.F., Saleh, S.M., and Elsanat, S.Y. 2017. The effects of supplemented biscuit with different levels of olive pomace on feeding diabetic rats. Journal of Sustainable Agriculture Science 43(3):151–163. 10.21608/jsas.2017.1521.1016
Esteve, M., Rafecas, I., Remesar, X., and Alemany, M. 1992. Nitrogen balances of lean and obese Zucker rats subjected to a cafeteria diet. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity 16(4):237–244.
Ferlisi, F., Tang, J., Cappelli, K., and Trabalza-Marinucci, M. 2023. Dietary supplementation with olive oil co-products rich in polyphenols: a novel nutraceutical approach in monogastric animal nutrition. Frontiers in Veterinary Science 10:1272274. 10.3389/fvets.2023.1272274
Formato, M., Cimmino, G., Brahmi-Chendouh, N., Piccolella, S., and Pacifico, S. 2022. Polyphenols for livestock feed: sustainable perspectives for animal husbandry? Molecules 27(22):7752. 10.3390/molecules27227752
Fouillet, H., Mariotti, F., Gaudichon, C., Bos, C., and Tome, D. 2002. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. Journal of Nutrition 132:125–133. 10.1093/jn/132.1.125
Ghimpețeanu, O.M., Pogurschi, E.N., Popa, D.C., Dragomir, N., Drăgotoiu, T., Mihai, O.D., and Petcu, C.D. 2022. Antibiotic use in livestock and residues in food—a public health threat: a review. Foods (Basel, Switzerland), 11(10):1430. 10.3390/foods11101430
Hertzler, S.R., Huynh, B.C., and Savaiano, D.A. 1996. How much lactose is low lactose? Journal of the American Dietetic Association 96(3):243–246. 10.1016/S0002-8223(96)00074-0
Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids, and proteins. Food Chemistry 175:556–567. 10.1016/j.foodchem.2014.12.013
Kjeldahl, J. 1883. A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie 22(1):366–382. 10.1007/BF01338151
Kraus, D., Yang, Q., and Kahn, B.B. 2015. Lipid extraction from mouse feces. Bio-Protocol 5(1):e1375. 10.21769/BioProtoc.1375
Lairon, D., Play, B., and Jourdheuil-Rahmani, D. 2007. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. Journal of Nutritional Biochemistry 18(4):217–227. 10.1016/j.jnutbio.2006.08.001
Lan, Y., Verstegen, M.W.A., Tamminga, S., and Williams, B.A. 2020. The role of the commensal gut microbial community in broiler chickens. World’s Poultry Science Journal 61(1):95–104. 10.1079/WPS200445
Leichter, J., and Tolensky, A.F. 1975. Effect of dietary lactose on the absorption of protein, fat and calcium in the post-weaning rat. American Journal of Clinical Nutrition 28(3):238–241. 10.1093/ajcn/28.3.238
Lejeune, M.P.G.M., Westerterp, K.R., Adam, T.C., Luscombe-Marsh, N.D., and Plantenga, M.S.W. 2006. Ghrelin and-glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a-respiration chamber. American Journal of Clinical Nutrition 83:89–94. 10.1093/ajcn/83.1.89
Li, X., Yin, J., Zhu, Y., Wang, X., Hu, X., Bao, W., Wang, Q., Guo, Q., Su, C., Zhang, J., Shen, L., and Ying, C. 2018. Effects of whole milk supplementation on gut microbiota and cardiometabolic biomarkers in subjects with and without lactose malabsorption. Nutrients 10(10):1403. 10.3390/nu10101403
Low, C.X., Tan, L.T.-H., Ab Mutalib, N.-S., Pusparajah, P., Goh, B.-H., Chan, K.-G., Letchumanan, V., and Lee, L.-H. 2021. Unveiling the impact of antibiotics and alternative methods for animal husbandry: a review. Antibiotics 10(5):578. 10.3390/antibiotics10050578
Mahmoud, S.Y.M., Ghaly, M.F., Essa, S.M.H., Abdel-Shafi, S., Abdel-Monaem, A., Osman, A., Aljeldah, M., Al Shammari, B., and Abdel-Haliem, M.E.F. 2023. Antimicrobial activity of whey milk and their fractions against Staphylococcus pasteuri clinical strain. Food Bioscience 53:102741. 10.1016/j.fbio.2023.102741
Nalle, D.A., and Bhande, M.Y. 2025. Review on innovations in -animal nutrition and feed technology for sustainable livestock production. In: Yadav, V.S., Netam, V.S., and Shingate, S.N. (eds.), Advances in Plant and Animal Sciences. Nature Light Publications, Pune, India, pp. 36–42.
National Research Council (NRC). 1995. Nutrient Requirements of Laboratory Animals, 4th edn. National Academy Press, Washington, DC.
Paié-Ribeiro, J., Pinheiro, V., Guedes, C., Gomes, M.J., Teixeira, J., Teixeira, A., and Outor-Monteiro, D. 2025. From waste to sustainable animal feed: incorporation of olive oil by-products into the diet of bísaro breed pigs. Sustainability 17(7):3174. 10.3390/su17073174
Pandey, A.K., Kumar, P., and Saxena, M.J. 2019. Feed additives in animal health. In: Gupta, R., Srivastava, A., and Lall, R. (eds.) Nutraceuticals in Veterinary Medicine. Springer, Cham, Switzerland, pp. 507–520.
Pearse, A.G.E. 1985. Histochemistry: Theoretical and Applied, 4th edn. Churchill Livingstone, Edinburgh, UK.
Peng, X., Hu, L., Liu, Y., Yan, C., Fang, B.F., Wang, Y., Wang, L., Liu, Y., and Wu, X. 2016. Effects of low-protein diets supplemented with indispensable amino acids on growth performance,-intestinal morphology, and immunological parameters in 13 to 35 kg pigs. Animal 10:1812–1820. 10.1017/S1751731116000999
Pilvi, T.K., Seppänen-Laakso, T., Simolin, H., Finckenberg, P., Huotari, A., Herzig, K.H., Korpela, R., Oresic, M., and Mervaala, E.M. 2008. Metabolomic changes in fatty liver can be modified by dietary protein and calcium during energy restriction. World Journal of Gastroenterology 14(28):4462–4472. 10.3748/wjg.14.4462
Reeves, P.G., Nielsen, F.H., and Fahey, G.C. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123(11):1939–1951. 10.1093/jn/123.11.1939
Ribeiro, T.B., Bonifácio-Lopes, T., Morais, P., Miranda, A., Nunes, J., Vicente, A.A., and Pintado, M. 2021. Incorporation of olive pomace ingredients into yoghurts as a source of fiber and hydroxytyrosol: antioxidant activity and stability throughout gastrointestinal digestion. Journal of Food Engineering 297:110476. 10.1016/j.jfoodeng.2021.110476
Rivière, A., Selak, M., Lantin, D., Leroy, F., and De Vuyst, L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in Microbiology 7:979. 10.3389/fmicb.2016.00979
Romani, A., Ieri, F., Urciuoli, S., Noce, A., Marrone, G., Nediani, C., and Bernini, R. 2019. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 11:81776. 10.3390/nu11081776
Sáez-Plaza, P., Navas, M.J., Wybraniec, S., Michałowski, T., and Asuero, A.G. 2013. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Critical Reviews in Analytical Chemistry 43(4):224–272. 10.1080/10408347.2012.751787
Schaafsma, G. 2005. The protein digestibility-corrected amino acid score (PDCAAS)—a concept for describing protein-quality in foods and food ingredients: a critical review. Journal of AOAC International 88(3):988–994. 10.1093/jaoac/88.3.988
Szilagyi, A. 2004. Redefining lactose as a conditional prebiotic. Canadian Journal of Gastroenterology 18(3):163–167. 10.1155/2004/350732
Tellez, G., Dean, C.E., Corrier, D.E., Deloach, J.R., Jaeger, L., and Hargis, B.M. 1993. Effect of lactose on cecal microflora and pathogen reduction. Journal of Poultry Science 72(11):1829–1836. 10.3382/ps.0720636
Tufarelli, V., Passantino, L., Zupa, R., Crupi, P., and Laudadio, V. 2022. Suitability of dried olive pulp in slow-growing broilers: performance, meat quality, oxidation products, and intestinal mucosa features. Poultry Science 101(12):102230. 10.1016/j.psj.2022.102230
Vanivska, K., Dianová, L., Halo, M., Štefunková, N., Lenický, M., Slanina, T., Tirpák, F., Jambor, T., Lukáč, N., Stawarz, R., Jaszcza, K., and Massányi, P. 2025. The impact of endocrine disruptions on animal and human organism. Journal of Microbiology, Biotechnology and Food Sciences 14(6):e11855. 10.55251/jmbfs.11855
Veldhorst, M., Smeets, A., Soenen, S., Hochstenbach-Waelen, A., Hursel, R., Diepvens, K., Lejeune, M., Luscombe-Marsh, N., and Plantenga, M.W. 2008. Protein-induced satiety: effects and mechanisms of different proteins. Physiology & Behavior 23:300–307. 10.1016/j.physbeh.2008.01.003
Wani, F.A., Albahrawy, A.Z., and Rahiman, S. 2015. Hypolipidemic activity of olive oil (Olea europaea) against high-fat diet--induced nonalcoholic fatty liver disease (NAFLD) in mice. Open Journal of Pathology 5(03):73. 10.4236/ojpathology.2015.53011
Wu, P., Chen, Y., Kong, Y., Chen, J., Yang, P., and Zhang, Y. 2020. Effect of lactose on intestinal morphology and digestion. Journal of Animal Feed Science and Technology 269:114616. 10.1016/j.anifeedsci.2020.114616
Yan, H., Yu, B., Degroote, J., Spranghers, T., Van Noten, N., Majdeddin, M., Van Poucke, M., Peelman, L., De Vrieze, J., Boon, N., Gielen, I., Smet, S., Chen, D., and Michiels, J. 2020. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research 16(1):392. 10.1186/s12917-020-02592-0
Yiğit, A., Bielska, P., Cais-Sokolińska, D., and Samur, G. 2023. Whey proteins as a functional food: health effects, functional properties, and applications in food. Journal of the American Nutrition Association 42(8):758–768. 10.1080/27697061.2023.2169208
Zarei, M., Ehsani, M., and Torki, M. 2011. Productive performance of laying hens fed wheat-based diets included olive pulp with or without a commercial enzyme product. African Journal of Biotechnology 10(20):4303–4312. 10.5897/AJB10.2361
