Evaluation of particle size on the physicochemical properties of Moringa oleifera Lam. stem powder
Main Article Content
Keywords
crystallinity, cellulose, functional groups, hydrogen bonds
Abstract
Moringa oleifera Lam. stem (MOS) has been used for beneficial dietary and medicinal purposes. In this work, MOS samples of six different particle sizes were produced using sieve-based mechanical grinding to investigate the impact of varying particle sizes on the physicochemical properties of MOS powder. Scanning electron microscopic images revealed the destroyed fiber structures after grinding. The color turned greener and less yellow with decreasing particle size. The angle of repose significantly decreased from 70.36º to 60.25º, as the particle size declined, demonstrating the increasing fluidity of granules. The applied mechanical treatment did not alter the primary conformational properties of MOS except for destructing the intramolecular hydrogen bonds of cellulose and hemicellulose, thereby decreasing the crystallinity and thermal stability. Surface element analysis demonstrated more carbon-rich extractives on the particle surface as the particle size reduced. This study provided reasons behind improved dissolution and bioavailability of functional ingredients in plant-based granular materials by reducing particle size.
References
Astrini, N.J., Rakhmawati, T., Sumaedi, S. and Bakti, I.G.M.Y., 2020. Identifying objective quality attributes of functional foods. Quality Assurance and Safety of Crops & Foods 12(2): 24–39
Avolio, R., Bonadies, I., Capitani, D., Errico, M.E., Gentile, G. and Avella, M., 2012. A multi-technique approach to assess the effect of ball milling on cellulose. Carbohydrate Polymer 87: 265–273. 10.1016/j.carbpol.2011.07.047
Balakrishnan, M., Gayathiri, S., Preetha, P., Pandiselvam, R., Jeevarathinam, G., Delfiya, D.A. and Kothakota, A., 2021. Micro-encapsulation of bixin pigment by spray drying: evaluation of characteristics. Lebensmittel-Wissenschaft & Technologie 145: 111343.
Barakat, A., Monlau, F., Solhy, A. and Carrere, H., 2015. Mechanical dissociation and fragmentation of lignocellulosic biomass: effect of initial moisture, biochemical and structural proprieties on energy requirement. Applied Energy 142: 240–246. 10.1016/j.apenergy.2014.12.076
Barretto, R., Buenavista, R.M., Pandiselvam, R. and Siliveru, K., 2021. Influence of milling methods on the flow properties of ivory teff flour. Journal of Texture Studies. Preprint. 10.1111/jtxs.12630
Chen, W. and Kuo, P., 2010. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35: 2580–2586. 10.1016/j.energy.2010.02.054
Chen, Y., Zhang, B., Sun, Y., Zhang, J., Sun, H. and Wei, Z., 2015. Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food & Function 6: 3728–3736. 10.1039/c5fo00600g
Gao, W., Chen, F., Wang, X. and Meng, Q., 2020. Recent advances in processing food powders by using superfine grinding techniques: a review. Comprehensive Reviews in Food Science and Food Safety 19: 2222–2255. 10.1111/1541-4337.12580
Gao, X., Zhu, D., Liu, Y., Zha, L., Chen, D. and Guo, H., 2019. Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. International Journal of Food Properties 22: 2022–2032. 10.1080/10942912.2019.1702999
Gharibzahedi, S.M.T., Ansarifard, I., Hasanabadi, Y.S., Ghahderijani, M. and Yousefi, R., 2013. Physicochemical properties of Moringa peregrina seed and its oil. Quality Assurance and Safety of Crops & Foods 5(4): 303–309. 10.3920/QAS2012.0172
He, S., Li, J., He, Q., Jian, H., Zhang, Y., Wang, J. and Sun, H., 2018. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling. Powder Technology 325: 126–133. 10.1016/j.powtec.2017.10.054
He, S., Tang, M., Sun, H., Ye, Y., Cao, X. and Wang, J., 2019. Potential of water dropwort (Oenanthe javanica DC.) powder as an ingredient in beverage: functional, thermal, dissolution and dispersion properties after superfine grinding. Powder Technology 353: 516–525. 10.1016/j.powtec.2019.05.048
Hong, S.J., Das, P.R. and Eun, J.B., 2020. Effects of superfine grinding using ball-milling on the physical properties, chemical composition, and antioxidant properties of Quercus salicina (Blume) leaf powders. Journal of the Science of Food and Agriculture 101: 3123–3131. 10.1002/jsfa.10941
Hua, X., Kaliaguine, S., Kokta, B. and Adnot, A., 1993. Surface analysis of different wood. Wood Science and Technology 27: 449–459.
Huang, X., Liang, K., Liu, Q., Qiu, J., Wang, J. and Zhu, H., 2020. Superfine grinding affects physicochemical, thermal and structural properties of Moringa Oleifera leaf powders. Industrial Crops and Products 151: 112472. 10.1016/j.indcrop.2020.112472
Ji, G., Gao, C., Xiao, W. and Han, L., 2016. Mechanical fragmentation of corncob at different plant scales: impact and mechanism on microstructure features and enzymatic hydrolysis. Bioresource Techno-logy 205, 159–165. 10.1016/j.biortech.2016.01.029
Kocaefe, D., Huang, X., Kocaefe, Y. and Boluk, Y., 2013. Quantitative characterization of chemical degradation of heat-treated wood surfaces during artificial weathering using XPS. Surface and Interface Analysis 45: 639–649. 10.1002/sia.5104
Li, G., Guo, W., Gao, X., Wang, Y. and Sun, S., 2020. Effect of superfine grinding on physicochemical and antioxidant properties of soybean residue powder. Food Science & Nutrition 8: 1208–1214. 10.1002/fsn3.1409
Liu, H., Chen, X., Ji, G., Yu, H., Gao, C., Han, L. and Xiao, W., 2019. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling. Bioresource Technology 286: 121364. 10.1016/j.biortech.2019.121364
Liu, Y., Lu, H., Poletto, M., Guo, X. and Gong, X., 2017. Bulk flow properties of pulverized coal systems and the relationship between inter-particle forces and particle contacts. Powder Technology 322: 226–240. 10.1016/j.powtec.2017.07.057
Meng, Q., Fan, H., Chen, F., Xiao, T. and Zhang, L., 2018. Preparation and characterization of Dendrobium officinale powders through superfine grinding. Journal of the Science of Food and Agriculture 98: 1906–1913. 10.1002/jsfa.8672
Meng, Q., Fan, H., Xu, D., Aboshora, W., Tang, Y., Xiao, T. and Zhang, L., 2017. Superfine grinding improves the bioaccessibility and antioxidant properties of Dendrobium officinale powders. International Journal of Food Science & Technology 52: 1440–1451. 10.1111/ijfs.13405
National Standards of People’s Republic of China. 2016. Powders-determination of tap density, GB/T 21354-22008, Beijing.
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3: 10. 10.1186/1754-6834-3-10
Qadri, T., Naik, H.R., Hussain, S.Z., Ahad, T., Shafi, F. and Sharma, M.K., 2022. Comparative evaluation of apple juice concentrate and spray dried apple powder for nutritional, antioxidant and rheological behaviour. Quality Assurance and Safety of Crops & Foods 14(2): 74–85.
Ramachandraiah, K. and Chin, K.B., 2016. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder. Innovative Food Science & Emerging Technologies 37: 115–124. 10.1016/j.ifset.2016.08.005
Sharma, K., Kumar, M., Waghmare, R., Suhag, R., Gupta, O.P., Lorenzo, J.M., Prakash, S., Radha, Rais, N., Sampathrajan, V., Thappa, C., Anitha, T., Sayed, A.A.S., Abdel-Wahab, B.A., Senapathy, M., Pandiselvam, R., Dey, A., Dhumal, S., Amarowicz, R. and Kennedy, J.F., 2022. Moringa (Moringa oleifera Lam.) polysaccharides: extraction, characterization, bioactivities, and industrial application. International Journal of Biological Macromolecules 209: 763–778. 10.1016/j.ijbiomac.2022.04.047
Shih, M., Chang, C., Kang, S. and Tsai, M., 2011. Effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa oleifera. International Journal of Molecular Sciences 12: 6077–6088. 10.3390/ijms12096077
Sinn, G., Reiterer, A. and Stanzl-Tschegg, S.E., 2001. Surface analysis of different wood species using X-ray photoelectron spectroscopy (XPS). Journal of Materials Science 36: 4673–4680. 10.1023/A:1017954300015
Sugahara, S., Chiyo, A., Fukuoka, K., Ueda, Y., Tokunaga, Y., Nishida, Y., Kinoshita, H., Matsuda, Y., Igoshi, K., Ono, M. and Yasuda, S., 2018. Unique antioxidant effects of herbal leaf tea and stem tea from Moringa oleifera L. especially on superoxide anion radical generation systems. Bioscience, Biotechnology, and Biochemistry 82: 1973–1984. 10.1080/09168451.2018.1495552
Sun, X., Zhang, Y., Li, J., Aslam, N., Sun, H., Zhao, J., Wu, Z. and He, S., 2019. Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder. PEERJ 7: e6369. 10.7717/peerj.6369
Toba, K., Yamamoto, H. and Yoshida, M., 2013. Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20: 633–643. 10.1007/s10570-012-9853-7
Wang, Z., McDonald, A.G., Westerhof, R.J.M., Kersten, S.R.A., Cuba-Torres, C.M., Ha, S., Pecha, B. and Garcia-Perez, M., 2013. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. Journal of Analytical and Applied Pyrolysis 100: 56–66. 10.1016/j.jaap.2012.11.017
Xiao, W., Zhang, Y., Fan, C. and Han, L., 2017. A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry 214: 242–247. 10.1016/j.foodchem.2016.07.096
Xu, Y., Hassan, M.M., Kutsanedzie, F.Y.H., Li, H.H. and Chen, Q.S., 2018. Evaluation of extra-virgin olive oil adulteration using FTIR spectroscopy combined with multivariate algorithms. Quality Assurance and Safety of Crops & Foods 10(4): 411–421. 10.3920/QAS2018.1330
Yang, S.L., Yang, R.C., Zhou, X., Yang, S.H., Luo, L.L., Zhu, Y.C. and Boonanuntan, S., 2020. Effects of feeding diets with processed Moringa oleifera stem meal on growth and laying performance, and immunological and antioxidant activities in laying ducks. Poultry Science 99: 3445–3451. 10.1016/j.psj.2020.04.002
Yang, Y., Ji, G., Xiao, W. and Han, L., 2014. Changes to the physicochemical characteristics of wheat straw by mechanical ultrafine grinding. Cellulose, 21: 3257–3268. 10.1007/s10570-014-0381-5
Zaiter, A., Becker, L., Karam, M. and Dicko, A., 2016. Effect of particle size on antioxidant activity and catechin content of green tea powders. Journal of Food Science and Technology 53: 2025–2032. 10.1007/s13197-016-2201-4
Zhang, Y., Li, R., Shang, G., Zhu, H., Mahmood, N. and Liu, Y., 2021. Mechanical grinding alters physicochemical, structural, and functional properties of tobacco (Nicotiana tabacum L.) leaf powders. Industrial Crops and Products 173: 114149. 10.1016/j.indcrop.2021.114149
Zhang, Y., Li, R., Shang, G., Zhu, H., Wang, H., Pandiselvam, R., Lei, D., Ai, Z. and Liu, Y., 2022. Effects of multiscale-mechanical fragmentation on techno-functional properties of industrial tobacco waste. Powder Technology 402: 117327. 10.1016/j.powtec.2022.117327
Zhang, J. and Zhai, A., 2020. Microstructure, thermodynamics, and rheological properties of different types of red adzuki bean starch. Quality Assurance and Safety of Crops & Foods 12(2): 89–99.
Zhao, D., Yang, F., Dai, Y., Tao, F., Shen, Y., Duan, W., Zhou, X., Ma, H., Tang, L. and Li, J., 2017. Exploring crystalline structural variations of cellulose during pulp beating of tobacco stems. Carbohydrate Polymer 174: 146–153. 10.1016/j.carbpol.2017.06.060
Zhao, X., Chen, J., Chen, F., Wang, X., Zhu, Q. and Ao, Q., 2013. Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids and Surfaces B: Biointerfaces 104: 207–212. 10.1016/j.colsurfb.2012.12.003
Zhao, X., Du, F., Zhu, Q., Qiu, D., Yin, W. and Ao, Q., 2010. Effect of superfine pulverization on properties of Astragalus membranaceus powder. Powder Technology 203: 620–625. 10.1016/j.powtec.2010.06.029
Zhao, X., Zhu, H., Chen, J. & Ao, Q., 2015a. FTIR, XRD and SEM analysis of ginger powders with different size. Journal of Food Processing and Preservation 39: 2017–2026. 10.1111/jfpp.12442
Zhao, X., Zhu, H., Zhang, G. and Tang, W., 2015b. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technology 286: 838–844. 10.1016/j.powtec.2015.09.025
Zhao, Y., Wu, X., Wang, Y., Jing, R. and Yue, F., 2017. Comparing physicochemical properties of hawthorn superfine and fine powders. Journal of Food Processing & Preservation 41: e12834. 10.1111/jfpp.12834
Zhong, C., Zu, Y., Zhao, X., Li, Y., Ge, Y., Wu, W., Zhang, Y., Li, Y. and Guo, D., 2016. Effect of superfine grinding on physico-chemical and antioxidant properties of pomegranate peel. International Journal of Food Science & Technology 51: 212–221. 10.1111/ijfs.12982
Zhou, Y., Yang, W., Li, Z., Luo, D., Li, W., Zhang, Y., Wang, X., Fang, M., Chen, Q. and Jin, X., 2018. Moringa oleifera stem extract protect skin keratinocytes against oxidative stress injury by enhancement of antioxidant defense systems and activation of PPARα. Biomedicine & Pharmacotherapy 107: 44–53. 10.1016/j.biopha.2018.07.152
